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Abstract. Monte Carlo simulations of magnetization and susceptibility in the 3D XY model are performed
for system sizes up to L = 384 (significantly exceeding the largest size L = 160 considered in work published
previously), and fields h ≥ 0.0003125 at two different coupling constants β = 0.5, and β = 0.55 in the
ordered phase. We examine the prediction of the standard theory that the longitudinal susceptibility χ‖
has a Goldstone mode singularity such that χ‖ ∝ h−1/2 holds when h → 0. Most of our results, however,
support another theoretical prediction that the singularity is of a more general form χ‖ ∝ hρ−1, where
1/2 < ρ < 1 is a universal exponent related to the ∼ hρ variation of the magnetization.

PACS. 05.10.Ln Monte Carlo methods – 75.10.Hk Classical spin models – 05.50.+q Lattice theory and
statistics (Ising, Potts, etc.)

1 Introduction

It is widely believed that three-dimensional O(n) mod-
els with global rotational symmetry (n ≥ 2) exhibit
a Goldstone-mode singularity in the ordered phase be-
low the critical temperature. See, for example [1–5] and
references therein for the theoretical approaches further
referred by us as the standard theory. These models
possess a local order parameter that is represented by
an n-component vector. The three-dimensional (3D) XY
model simulation studied here is in this category. For such
a system, the magnetization M(h) is expected to behave
as

M(h) = M(+0) + c1h
1/2 as h → 0, (1)

depending on the external field h, where M(+0) =
limh→0 M(h) is the spontaneous magnetization. Thus, the
assumption here is that the longitudinal suseptibility χ‖
scales exactly as ∂M(h)/∂h ∝ h−1/2 as h → 0. However,
it has been argued in [6,7] that, in principle, this cannot
be the exact asymptotic behaviour (see also [8] for details
of the formalism). Hence, a generalisation of equation (1)
has been proposed:

M(h) = M(+0) + c1h
ρ as h → 0, (2)

where 1/2 < ρ < 1 is an exponent related to the singular-
ity of the transverse correlation function G⊥(k) ∼ k−λ⊥

in Fourier space at h = +0 via

ρ = (d/λ⊥) − 1, (3)
a e-mail: kaupuzs@latnet.lv

where d is the spatial dimensionality. Equation (1) is ob-
tained from equation (2) by formally setting ρ = 1/2,
which is consistent with the Gaussian result λ⊥ = 2
at d = 3. Some numerical support for the claims that
ρ = 1/2, based on the observation that the Monte Carlo
(MC) simulations of magnetization data, have previously
been reported [9–11]. These include an additional correc-
tion term, which is consistent with the expansion in pow-
ers of h1/2 provided by the standard theory [1–5]. The
exponent ρ itself, however, has not been determined in
[9–11]. Therefore, a proposal that a better fit to the data
could be found using a slightly different value for ρ can-
not be excluded. Some initial attempts to determine ρ for
the 3D XY model from MC data have been made in [7].
However, we find here that the fields h that were used
are still too large to provide reliable results. In this work
the simulations are extended to much smaller fields and
larger lattices, up to a linear lattice size L = 384. This
significantly exceeds the largest size L = 160 simulated
previously [11]. It enables us to extract the thermody-
namic limit values for magnetization and susceptibility,
including fields several times smaller (at a given coupling
constant) than in [11]. The new data suggest that the ex-
ponent ρ has a value that is slightly larger than 1/2. In
our opinion this fact has fundamental significance, since
it indicates that the long-distance spin fluctuations very
likely are not simply Gaussian spin waves, or noninteract-
ing massless bosons from quantum field theory. Instead,
there is a new, more complex physics behind it.
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2 Method

Monte Carlo simulations are performed of the 3D XY
model for a simple cubic lattice using the Hamiltonian H
given by

H
T

= −β

⎛
⎝∑

〈ij〉
sisj +

∑
i

hsi

⎞
⎠, (4)

where T is temperature, si is the spin variable (a two-
component vector of unit length in the xy-plane) of the
ith lattice site, β is the coupling constant, and h is the
external field. We define that the field is oriented along
the x axis. The simulations are performed in the ordered
phase at β = 0.5, 0.55 > βc, where βc � 0.4542 [12] is the
critical point. Both the x-projection of magnetization per
spin 〈mx〉, and the longitudinal susceptibility,

χ‖ =
∂〈mx〉
∂H

= V
(〈m2

x〉 − 〈mx〉2
)
, (5)

are evaluated for different lattice sizes L, where V = L3

is the volume and H = βh.
The simulations employ both a Metropolis algorithm

(for h ≥ 0.005), and a modified Wolff’s cluster algorithm
(for h ≤ 0.02). The standard Wolff’s algorithm [13] is de-
signed for zero external field h = 0. The external field
can be introduced as an auxiliary spin which interacts
with all other spins via the coupling constant |h| β. This
spin is treated on the same grounds as others, whereas
the x-projection of magnetization (given by non-auxiliary
spins) is its projection on the auxiliary spin. This mod-
ification is fully analogous to that used in [9] for the
Swendsen-Wang algorithm.

The Metropolis algorithm can be optimized slightly by
choosing a range of allowed rotation angles [−ϕmax, ϕmax]
for a single spin flip that ensures about 50% probability
of its acceptance. We use ϕmax = 0.8π for β = 0.5, and
ϕmax = 0.7π for β = 0.55. In the simulations using the
Metropolis algorithm for L ≤ 64, the statistical averages
are evaluated over the interval 0.08 ≤ h ≤ 0.32, from
(3.2 × 106) × (64/L2) sweeps, discarding at least the first
50 000 from the beginning of the simulation to ensure sat-
isfactory equilibration. When h < 0.08, the total number
of Monte Carlo steps in the simulation, including the dis-
carded part, is made larger by a factor 0.08/h. Each sim-
ulation is divided into bins, using the final 50 to estimate
〈mx〉 and 〈m2

x〉, and their standard errors. The suscepti-
bility χ‖ is then calculated from these values according to
equation (5). The error bars are evaluated by the jackknife
method [14]. When the lattice size is L = 128, the num-
ber of retained sweeps ranges from 60% to 100% of that
for smaller lattices. When L = 192 this fraction is 30% to
40%. The discarded part is 50% of the whole simulation
when L = 64, 128, and 192.

For smaller fields — where the Metropolis algorithm
becomes increasingly ineffective — the simulation employs
the modified Wolff’s cluster algorithm. Here better results
are achieved using a much smaller number of sweeps (e.g.,
by an order of magnitude at h = 0.01 and L = 128, 192)

than the Metropolis takes. It is also not necessary to dis-
card so much of the simulation to achieve equilibration.
For the largest lattice with L = 384, and the smallest
field h = 0.0003125 at β = 0.5, the calculation takes
1.35 × 105 cluster algorithm steps (collected from 3 inde-
pendent runs), or about (1.35×105)× (meanclustersize) �
2.97 × 104 sweeps. The first 1.65 × 103 sweeps are dis-
carded from each set. A similar or somewhat larger num-
ber of sweeps are also used in other simulations that em-
ploy the modified Wolff’s cluster algorithm. Although the
cluster algorithm appears to be much more effective than
the Metropolis one when considering small fields, a com-
parison between the results of both algorithms provides a
useful test of validity.

Note that, in principle, significant systematic errors
can occur if the random number generator is poorly imple-
mented [15,16]. These errors, however, depend on which
simulation algorithm is used. Hence, if they are present in
our simulations, their effect could be seen as a discrepancy
between the results obtained by the Metropolis algorithm
compared with the cluster one. Since both algorithms also
have completely different equilibration properties, faults
here may also produce discrepancies. To avoid any possible
problems caused by correlations among pseudo-random
numbers, we employ a sophisticated shuffling scheme that
was recently proposed and tested in [17].

3 Results

3.1 Magnetization 〈mx〉 and susceptibility χ‖

Calculated values of 〈mx〉 by both algorithms at β = 0.55
for system sizes L = 16, 32, 64, 128, 192 over the interval
0.005 ≤ h ≤ 0.32 are shown in Table 1. The extended
results for smaller fields 0.000625 ≤ h ≤ 0.0025 and larger
lattices L ≤ 384, obtained by the cluster algorithm, are
given in Table 2.

The corresponding results for larger and smaller fields
(up to h = 0.0003125) at β = 0.5 are presented in Tables 3
and 4, respectively.

In Tables 5–8 the results are given for susceptibility χ‖
using the same parameters as for the magnetization data
in Tables 1–4, respectively.

In general, we observe no detectable systematic dis-
crepancies between the results of the Metropolis and mod-
ified Wolff’s algorithms. Occasionally, random deviations
do occur that are slightly larger in magnitude than the es-
timated standard errors σ: this is expected from statistics,
and is acceptable. We observe a fast convergence to the
thermodynamic limit values for the simulated quantities
with increasing system size. However, the smaller the field
h is, the larger the size must be to reach the thermody-
namic limit. It appears that the minimal acceptable size
scales approximately as ∝h−1/2. In fact, for any given h
in Tables 1–8, the results for at least the two largest sizes
available coincide within the simulation accuracy. There-
fore, the data for largest lattice sizes provide satisfactory
estimates of the thermodynamic limit values, given in Ta-
ble 9.
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Table 1. Calculated values of 〈mx〉 for the 3D XY model using different lattice sizes L and external fields h ≥ 0.005 at a
fixed coupling constant β = 0.55. The underlined values are simulated by the modified Wolff’s algorithm, the others are by the
Metropolis algorithm.

〈mx〉
h

L = 192 L = 128 L = 64 L = 32 L = 16

0.005 0.639572(13) 0.639577(14) 0.639519(24)

0.005 0.639415(74) 0.63723(16)
0.007 0.641440(13) 0.641465(17)

0.007 0.641481(21) 0.641440(28) 0.641372(65) 0.64035(13) 0.61905(68)
0.01 0.643955(12) 0.643975(13) 0.643955(16)

0.01 0.643976(16) 0.643954(21) 0.643977(57) 0.64324(12) 0.62969(48)
0.014 0.646875(17) 0.646901(22) 0.646836(55) 0.646570(86) 0.63841(29)
0.02 0.650751(13) 0.650748(13)

0.02 0.650750(16) 0.650757(16) 0.650797(46) 0.650669(67) 0.64566(20)
0.028 0.655236(13) 0.655247(15) 0.655332(42) 0.655175(73) 0.65260(14)
0.04 0.661156(12) 0.661128(12) 0.661131(42) 0.661144(58) 0.65977(13)
0.056 0.668020(12) 0.668000(14) 0.668045(39) 0.668042(51) 0.667342(85)
0.08 0.676888(12) 0.676895(13) 0.676956(42) 0.676946(55) 0.676609(87)
0.112 0.6869974(83) 0.686969(27) 0.686955(50) 0.686947(57)
0.16 0.699763(23) 0.699847(32) 0.699730(47)
0.224 0.713916(22) 0.713941(30) 0.713922(38)
0.32 0.731122(17) 0.731148(24) 0.731174(34)

Table 2. Calculated values of 〈mx〉 by modified Wolff’s algorithm for the 3D XY model using different lattice sizes L and
external fields h ≤ 0.0025 at a fixed coupling constant β = 0.55.

〈mx〉
h

L = 384 L = 256 L = 192 L = 128

0.000625 0.633431(11) 0.633426(15)
0.00125 0.634699(11) 0.634709(14) 0.634694(18)
0.0025 0.636642(13) 0.636663(17)

Table 3. Calculated values of 〈mx〉 for the 3D XY model using different lattice sizes L and external fields h ≥ 0.005 at a
fixed coupling constant β = 0.5. The underlined values are simulated by the modified Wolff’s algorithm, the others are by the
Metropolis algorithm.

〈mx〉
h

L = 192 L = 128 L = 64 L = 32 L = 16

0.005 0.533655(11) 0.533640(22) 0.533571(29) 0.53155(19)

0.005 0.533567(75) 0.53123(22)
0.007 0.536931(13) 0.536931(29) 0.536846(82) 0.53585(13) 0.51299(65)

0.01 0.541304(12) 0.541323(22) 0.541276(19)

0.01 0.541283(23) 0.541329(23) 0.541193(59) 0.54057(12) 0.52748(36)
0.014 0.546442(24) 0.546388(68) 0.54616(11) 0.53798(28)
0.02 0.553239(14) 0.553246(16)

0.02 0.553272(14) 0.553227(20) 0.553223(51) 0.553315(71) 0.54830(23)
0.028 0.561141(18) 0.561088(45) 0.561158(83) 0.55856(15)
0.04 0.571286(16) 0.571313(19) 0.571323(54) 0.571391(69) 0.57018(12)
0.056 0.582877(18) 0.582950(45) 0.582959(71) 0.58224(11)
0.08 0.597470(17) 0.597501(18) 0.597505(52) 0.597487(63) 0.59730(11)
0.112 0.613547(15) 0.613496(46) 0.613468(62) 0.613370(90)
0.16 0.633219(31) 0.633111(50) 0.633128(70)
0.224 0.653998(28) 0.654033(34) 0.653993(57)
0.32 0.678470(22) 0.678437(32) 0.678389(52)
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Table 4. Calculated values of 〈mx〉 by the modified Wolff’s algorithm for the 3D XY model using different lattice sizes L and
external fields h ≤ 0.0025 at a fixed coupling constant β = 0.5.

〈mx〉
h

L = 384 L = 256 L = 192 L = 128

0.0003125 0.522091(13) 0.522066(23) 0.522009(28)
0.000625 0.523453(15) 0.523436(20) 0.523253(31)
0.00125 0.525490(16) 0.525462(22)
0.0025 0.528682(15) 0.528678(22)

Table 5. Calculated values of χ‖ for the 3D XY model using different lattice sizes L and external fields h ≥ 0.005 at a fixed
coupling constant β = 0.55. The underlined values are simulated by the modified Wolff’s algorithm, the others are by the
Metropolis algorithm.

χ‖
h

L = 192 L = 128 L = 64 L = 32 L = 16

0.005 1.883(35) 1.825(46) 1.903(21)

0.005 1.985(76) 3.23(12)
0.007 1.692(43) 1.588(25)

0.007 1.623(49) 1.635(30) 1.624(35) 2.178(69) 9.55(40)
0.01 1.419(34) 1.441(26) 1.424(11)

0.01 1.426(35) 1.385(28) 1.455(36) 1.698(51) 5.29(25)
0.014 1.246(40) 1.258(31) 1.262(25) 1.323(20) 2.947(99)
0.02 1.105(45) 1.057(20)

0.02 1.151(38) 1.060(19) 1.109(21) 1.121(16) 1.889(41)
0.028 0.941(29) 1.001(19) 0.925(18) 0.978(11) 1.265(19)
0.04 0.811(24) 0.811(14) 0.853(15) 0.8401(79) 0.977(13)
0.056 0.743(22) 0.718(16) 0.734(16) 0.740(10) 0.7743(71)
0.08 0.635(24) 0.642(15) 0.628(14) 0.6229(71) 0.6370(45)
0.112 0.516(13) 0.515(10) 0.5281(55) 0.5370(38)
0.16 0.4410(83) 0.4374(48) 0.4441(22)
0.224 0.3675(65) 0.3671(29) 0.3679(19)
0.32 0.2888(43) 0.2925(22) 0.2928(13)

Table 6. Calculated values of χ‖ by the modified Wolff’s al-
gorithm for the 3D XY model using different lattice sizes L
and external fields h ≤ 0.0025 at a fixed coupling constant
β = 0.55.

χ‖
h

L = 384 L = 256 L = 192 L = 128

0.000625 4.60(13) 4.45(11)
0.00125 3.420(80) 3.347(82) 3.346(66)
0.0025 2.373(40) 2.408(32)

A weighted average is applied over the overlaping re-
sults obtained by the two simulation algorithms, using
weights that are ∝1/σ2

i (with individual standard errors σi

indicated after the tabulated values, which is the usually
accepted practice for MC simulations). This minimizes the
resulting statistical errors. Note that the thermodynamic
limit for magnetization can be extracted in different ways,
e.g., from its modulus 〈|m|〉, or from squared magnetiza-
tion 〈m2〉 data when L→∞. We use the 〈mx〉 data, as

in [11], since the finite-size effects are smaller for the range
of L and h considered in this case.

3.2 The exponent ρ

Here the exponent ρ in equation (2) is determined from
the numerical data listed in Table 9. According to equa-
tion (5), equation (2) implies that

χ‖ ∝ hρ−1. (6)

Therefore, a singularity occurs in the longitudinal suscep-
tibility when h → 0. This provides a simple way to esti-
mate ρ from the gradient of ln χ‖ as a function of lnh. This
is shown in Figure 1. The linear fits yield ρ = 0.6003(58)
for β = 0.55, and ρ = 0.6162(39) for β = 0.5. The latter
result possesses a smaller value for the sum of weighted
squared deviations per degree of freedom χ2/Nd.o.f. of the
fit [18]. When β = 0.55, χ2/Nd.o.f. = 2.03, and when
β = 0.5, χ2/Nd.o.f. = 1.26. Hence, these results support
the idea that ρ > 1/2 holds, as proposed in [6,7]. Any
such determination, however, should be taken with cau-
tion even when the fit is apparently good (as in the case
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Table 7. Calculated values of χ‖ for the 3D XY model using different lattice sizes L and external fields h ≥ 0.005 at a
fixed coupling constant β = 0.5. The underlined values are simulated by the modified Wolff’s algorithm, the others are by the
Metropolis algorithm.

χ‖
h

L = 192 L = 128 L = 64 L = 32 L = 16

0.005 3.418(57) 3.458(56) 3.606(32) 5.07(12)

0.005 3.564(70) 5.16(16)
0.007 3.157(57) 3.089(69) 3.166(57) 3.640(79) 12.66(47)

0.01 2.779(46) 2.683(30) 2.743(16)

0.01 2.743(70) 2.681(44) 2.826(43) 3.078(73) 6.98(20)
0.014 2.344(40) 2.466(47) 2.532(35) 4.368(91)
0.02 2.057(45) 2.091(26)

0.02 2.077(70) 2.153(39) 2.116(37) 2.115(25) 3.029(63)
0.028 1.836(34) 1.830(26) 1.826(16) 2.174(24)
0.04 1.661(76) 1.618(29) 1.549(30) 1.566(17) 1.710(17)
0.056 1.324(31) 1.303(26) 1.324(15) 1.391(10)
0.08 1.186(47) 1.123(24) 1.111(26) 1.092(13) 1.1150(74)
0.112 0.941(20) 0.928(20) 0.9117(85) 0.9146(55)
0.16 0.732(14) 0.7361(72) 0.7320(33)
0.224 0.577(10) 0.5738(46) 0.5812(30)
0.32 0.4415(75) 0.4481(34) 0.4456(22)

Table 8. Caculated values of χ‖ by the modified Wolff’s algorithm for the 3D XY model using different lattice sizes L and
external fields h ≤ 0.0025 at a fixed coupling constant β = 0.5.

χ‖
h

L = 384 L = 256 L = 192 L = 128

0.0003125 10.27(28) 10.33(33) 10.99(36)
0.000625 7.86(15) 7.93(15) 8.87(21)
0.00125 5.83(10) 6.009(73)
0.0025 4.584(79) 4.526(59)

Table 9. The estimated thermodynamic limit values of magnetization M and longitudinal susceptibility χ‖ of the 3D XY
model for two values of coupling constant β and different external fields h.

β = 0.55 β = 0.5
h

M χ‖ M χ‖
0.0003125 0.522091(13) 10.27(28)
0.000625 0.633431(11) 4.60(13) 0.523453(15) 7.86(15)
0.00125 0.634699(11) 3.420(80) 0.525490(16) 5.83(10)
0.0025 0.636642(13) 2.373(40) 0.528682(15) 4.584(79)
0.005 0.639572(13) 1.883(35) 0.533655(11) 3.418(57)
0.007 0.641451(11) 1.662(32) 0.536931(13) 3.157(57)
0.01 0.6439623(94) 1.422(24) 0.541300(11) 2.768(38)
0.014 0.646875(17) 1.246(40) 0.546442(24) 2.344(40)
0.02 0.6507506(99) 1.132(29) 0.5532558(99) 2.063(38)
0.028 0.655236(13) 0.941(29) 0.561141(18) 1.836(34)
0.04 0.661156(12) 0.811(24) 0.571286(16) 1.661(76)
0.056 0.668020(12) 0.743(22) 0.582877(18) 1.324(31)
0.08 0.676888(12) 0.635(24) 0.597470(17) 1.186(47)
0.112 0.6869974(83) 0.516(13) 0.613547(15) 0.941(20)
0.16 0.699763(23) 0.4410(83) 0.633219(31) 0.732(14)
0.224 0.713916(22) 0.3675(65) 0.653998(28) 0.577(10)
0.32 0.731122(17) 0.2888(43) 0.678470(22) 0.4415(75)
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Fig. 1. Linear fits to the parallel component of ln χ‖ plotted
as a function of lnh using β = 0.55 (solid circles) and β = 0.5
(empty circles).

of β = 0.5). The gradient of the function can change very
gradually, resulting in a significant discrepancy between
its true value and the asymptotic one.

It is possible to make a better estimate of ρ using the
more accurate magnetization data, based on the assump-
tion that it is described by

M(h) = M(+0) +
m∑

n=0

cnhρn , (7)

and making the leading exponent ρ0 ≡ ρ as the adjustable
parameter, with the correction exponents ρn = (n + 1)/2
being choosen according to the standard theory [4]. The
results test the validity of this theory.

The number of correction terms m is varied from
m = 0 to m = 2. The fitted exponent ρ is expected to
converge to its true value when using smaller h, even if
the fixed correction exponents are approximate. To ex-
amine the asymptotic behaviour of ρ when h → 0, it is
determined over several different intervals for h. These
are choosen such that they should be sufficiently wide to
ensure stability of the fitting procedure, while being nar-
row enough to have a meaningful effect on the value of
χ2/Nd.o.f.. The results for the exponent ρ at β = 0.55
and β = 0.5 are given in Tables 10 and 11, respectively.
Evidently, the fits which ignore the corrections to scaling
(m = 0), as well as those ones which include only the lead-
ing correction term (m = 1) place the exponent ρ closer to
0.6 than to the standard theoretical value 0.5. The values
for β = 0.5 and β = 0.55, however, do not agree suffi-
ciently well, indicating that the higher order corrections
could be responsible for systematic errors in these results,
leading to inconsistent values for ρ.

The fits with m = 2, which include also the second
order correction to scaling, provide reasonably consistent
and somewhat smaller values for ρ. Within the accuracy
of the simulation, this confirms the theoretically expected
universality of this exponent. At β = 0.55 these estimates
overlap, or nearly overlap within 1σ error range with the
standard value ρ = 0.5. However, a trend may be discerned
from the data indicating that for smaller values of h, the
exponent ρ is larger than 0.5. This is more noticeable when
β = 0.5, where the effect appears to be statistically sig-

Table 10. The exponent ρ and χ2/Nd.o.f. calculated for β =
0.55 using m = 0, 1, or 2 correction terms in equation (7) fitted
over various intervals of the field h.

m h × 103 ρ χ2/Nd.o.f.

2.5–14 0.6038(65) 2.10
0 1.25–14 0.5969(39) 1.97

0.625–14 0.5972(28) 1.48
0.625–10 0.5946(36) 1.58
2.5–56 0.6184(99) 2.19
2.5–40 0.597(15) 1.94

1 1.25–40 0.5760(94) 2.16
1.25–28 0.558(16) 2.25
0.625–20 0.550(15) 1.73
0.625–14 0.575(24) 1.70
2.5–112 0.531(21) 1.31
1.25–112 0.512(13) 1.30

2 0.625–80 0.514(14) 1.41
0.625–56 0.525(21) 1.57
0.625–40 0.537(30) 1.81

Table 11. The exponent ρ and χ2/Nd.o.f. calculated for β =
0.5 using m = 0, 1, or 2 correction terms in equation (7) fitted
over various intervals of the field h.

m h × 103 ρ χ2/Nd.o.f.

1.25–20 0.6356(14) 2.05
0.625–20 0.6356(10) 1.64

0 0.3125–14 0.6311(15) 1.33
0.3125–10 0.6300(18) 1.37
0.3125–7 0.6291(29) 1.77
1.25–20 0.592(19) 1.04
0.625–20 0.619(12) 1.53

1 0.3125–20 0.6141(80) 1.28
0.3125–14 0.621(13) 1.50
0.3125–10 0.629(17) 1.82
0.625–40 0.525(26) 2.81

2 0.625–28 0.559(37) 3.11
0.3125–40 0.538(17) 2.41
0.3125–28 0.561(23) 2.49

nificant. Since theory (both the standard one and that
developed in [7]) predicts that ρ is a universal quantity,
it is reasonable to average over the estimates for β = 0.5
and β = 0.55 to obtain statistically more reliable values.
Averages weighted using 1/σ2

i over both sets of results for
m = 2 at larger and smaller fields are given in Table 12.
An estimate ρ = 0.552(18) is obtained from the data at
the smallest h values.

The average values of ρ shown in Table 12 increase for
smaller fields and are significantly larger than the stan-
dard value 0.5. This supports the prediction made in [7],
that the standard theory is not asymptotically exact when
h → 0, and that 1/2 < ρ < 1. To be more confident about
this conclusion, the influence of the finite-size effects are
tested by repeating various calculations with a different
data set, obtained using weighted averages over magneti-
zation values for two largest lattices at each h, instead of
only the largest lattice. Good agreement of the fit results
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Table 12. Average values of ρ using β = 0.5 and β = 0.55,
with m = 2 correction terms included in equation (7), fitted
over various intervals of the field h. For each estimate, the first
of the indicated h intervals refers to β = 0.5, while the second
refers to β = 0.55.

h × 103 intervals ρ

0.625–40, 1.25–112 0.515(12)
0.625–28, 0.625–80 0.520(13)
0.3125–40, 0.625–56 0.533(13)
0.3125–28, 0.625–40 0.552(18)

is observed in all cases, indicating that the finite-size ef-
fects are smaller than the statistical errors. In particular,
our estimate ρ = 0.552(18) changes by only −0.19σ.

A disadvantage of the fits using m = 2 is that the
results vary significantly depending on the h interval, so
that it is difficult to judge on what value ρ converges.
A possible reason for this could be the fact that there
are too many (five) fitting parameters included. Indeed,
greater numbers of fitting parameters make the results
even more unstable, i.e., the variation depending on the h
interval becomes larger, and the statistical errors increase.
Therefore, fits with m > 2 probably should be avoided.

One could argue näıvely that a fit with more correction
terms should be better than one with fewer. However, we
need to include data for larger h to obtain statistically
reliable results as m increases. Moreover, an asymptotic
expansion of the form in equation (7) is expected to be
well convergent and valid, only for sufficiently small fields.
Therefore, using more correction terms is useless. It is not
even clear whether the fits with m = 2 are better than
those with m = 1. Indeed, when the largest h data are
discarded, the values of ρ in Table 12 come closer to those
suggested by the fits with m = 1. Hence, it is quite possible
that the decrease in ρ which occurs when m is changed
from 1 to 2, is mainly a consequence of including large
fields.

Our results are consistent with the idea that the Gaus-
sian spin wave theory provides a reasonable approxima-
tion. The standard theory reduces to Gaussian spin wave
theory when h → 0 in the limit of long distances or small
wave vectors k. A similar situation occurs at the crit-
ical point, where it is well-known [19] that the Fourier
transform of the two-point correlation function scales as
G(k) ∼ k−2+η (when k→0) with a small positive expo-
nent η, instead of possessing purely Gaussian behaviour
G(k) ∼ k−2. Similarly, we have G⊥(k) ∼ k−2+η∗

for
the transverse correlation function of the 3D XY model
in the ordered phase at h = +0, where η∗ = 0.067(22)
holds according to equation (3) and our current estimate
ρ = 0.552(18).

3.3 Spontaneous magnetization M(+0)

Table 13 shows the effect on the spontaneous magnetiza-
tion M(+0) of fitting the magnetization data from Ta-
ble 9 to equation (7) using m = 1 for different, fixed

Table 13. The dependence of the spontaneous magnetization
M(+0) (and χ2/Nd.o.f.) on ρ, fitted to equation (7) using m =
1 over a range H = βh for β = 0.55.

H × 104 ρ M(+0) χ2/Nd.o.f.

0.5 0.630289(82) 2.21
6.875–55 0.55 0.630580(75) 1.42

0.6 0.630822(69) 0.81
0.65 0.631026(63) 0.36
0.5 0.630489(41) 5.06

3.4375–55 0.55 0.630718(38) 3.02
0.6 0.630910(35) 1.51
0.65 0.631071(32) 0.52

Table 14. The dependence of the spontaneous magnetization
M(+0) (and χ2/Nd.o.f.) on ρ, fitted to equation (7) using m =
1 over a range H = βh for β = 0.5.

H × 104 ρ M(+0) χ2/Nd.o.f.

0.5 0.518426(50) 3.34
6.25–70 0.55 0.518969(46) 1.55

0.6 0.519421(43) 1.05
0.65 0.519803(40) 1.84
0.5 0.519109(37) 0.90

1.5625–25 0.55 0.519362(34) 0.52
0.6 0.519571(31) 0.93
0.65 0.519747(29) 2.13

values of ρ from 0.5 to 0.65, and β = 0.55. This is re-
peated for β = 0.5 in Table 14. These results can be
compared directly with [11]. Note that the field is now
expressed as H × 104, where H = βh. In [11], the in-
tervals used are 10 ≤ (H×104) ≤ 50 for β = 0.55,
and 8 ≤ (H×104) ≤ 75 for β = 0.5, where in each
case M(+0) = 0.6303(1) and 0.5186(1), respectively, and
ρ = 1/2 [11]. In Tables 13 and 14, the closest correspond-
ing intervals are 6.875 ≤ (H×104) ≤ 55 for β = 0.55
and 6.25 ≤ (H×104) ≤ 70 for β = 0.5, and both with
ρ = 1/2, giving M(+0) = 0.630289(82) and 0.518426(50),
respectively. Thus, the agreement between the present and
previous results is good; however, notice that χ2/Nd.o.f. is
smaller when ρ > 0.5, meaning that the fit to the data
is better. Similar behaviour is also seen for the lower H
intervals in Tables 13 and 14. Hence, these results imply
that the validity of the theory cannot be tested using data
for ρ = 0.5 only: the effect of varying the exponent on the
quality of the fit must also be considered.

The above estimates of the spontaneous magnetiza-
tion for β = 0.55 and β = 0.5 can also be compared with
M(+0) = 0.63071(14) and M(+0) = 0.51941(11), respec-
tively, derived from the results in Section 3.2, including
m = 2 correction terms in equation (7), and ρ as the ad-
justable parameter.

4 Conclusions

1. Monte Carlo simulations of the magnetization and
susceptibility in the 3D XY model, performed by a
Metropolis algorithm and a modified Wolff’s cluster



370 The European Physical Journal B

algorithm, for system sizes up to L = 384, and fields
h ≥ 0.0003125 (for β = 0.5) at two different coupling
constants β = 0.5 and β = 0.55 in the ordered phase
are reported in this work. The largest size previously
reported is L = 160 [11]. The agreement between the
simulation results by both algorithms demonstrate the
validity the results (i.e., the absence of critical system-
atic errors), as discussed in Section 2.

2. The exponent ρ in equation (2), which characterizes
the singularity of the magnetization at small fields
when h → 0, is evaluated in several different ways,
as described in Section 3.

3. Results for magnetization data similar to [11] are
given, fitted to equation (7), with ρ = 1/2 (Sect. 3.3).
In this case the estimated values of spontaneous mag-
netization agree well with those given in [11]. However,
we find that the data fit better with somewhat larger
values of the exponent ρ. This represents an advance
on the earlier work where the magnetization data are
calculated without considering the effect of the expo-
nent.
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